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1 Introduction 
One of the key issues faced by modern society is navigating the transformation towards a sustainable economy 

that respects 'planetary boundaries' (Rockström et al., 2009). However, most models in the line of neoclassical 

theory taught to students worldwide are neglecting environmental and physical variables. In addition, most 

general equilibrium models abstract from the monetary stocks and flows and base their reasoning on 'real' 

economic variables and exchange. The word 'real' does in no way mean that 'physical' variables such as energy or 

material flows are treated. This chapter highlights possible links between ecological and post-Keynesian economics 

and develops a simple toy model that can serve as foundation for studying interrelations between the monetary 

economy and the physical environment. Its economy is modeled in discrete time using a balance sheet approach, 

and production is demand driven. The source of production is the ecosystem that is affected by economic 'harvest', 

and economic degradation can generate restrictions on supply. Both the monetary and physical economy are 

modeled in a stock-flow consistent way.  

The chapter is structured as follows: In the next section, we give a short overview about the theoretical 

background. We outline important aspects of post-Keynesian monetary theory and ecological economics 

considering a possible synthesis. In the second chapter, we provide a comprehensive description of what we call 

the monetary physical stock-flow fund-service model. First simulation results provide a first intuition of the model 

behavior. A stability analysis gives general insights into the parameter dependence of different model outcomes. 

The chapter is completed with final remarks.  

2 Theoretical Background 

2.1 Monetary theory of production 

Most neoclassical theories tend to assume that money is neutral in the long term, a mere numeraire or means of 

exchange, without significant differences from circulating commodities. It improves efficiency of barter but plays 

a rather passive role in the economic process. Therefore, the impact of monetary issues on long-run economic 

processes such as economic growth or environmental issues is considered negligible. Those emphasizing the need 

for a monetary theory of production reject this assumption.  One effort to explicitly represent the dynamics of 

debt, finance, and other monetary factors has been the balance sheet approach (see the chapter by Dirk Ehnts in 

this book), that tracks assets and liabilities and their interdependence in the economy. The central importance of 

attention to financial detail was illustrated by the failure of the macroeconomics profession to anticipate the 2007–

2008 Global Financial Crisis, which was predicted nearly exclusively by those who deployed implicit or explicit 

macro-accounting frameworks (Galbraith, 2009; Bezemer, 2010; Koo, 2011). 

In recent years, models based on these accounting relationships and a coherent study of monetary stocks and 

flows were advanced particularly by post-Keynesian authors using the term 'stock-flow consistent models' (SFC), 

see Godley and Lavoie (2012). This strand of theory argues with reference to Keynes (1936) that production adapts 

to demand. Keynesian macroeconomic theory places great emphasis on the determination of a level of effective 

demand commensurate with key economic policy goals, but the ecological implications of those economic policy 

goals have often been neglected (Berg et al., 2015). 



 

2.2 Ecological Economics 

Ecological economists have criticized approaches such as SFC models on grounds that they focus on the circular 

flow of exchange value (i.e. money), rather than on the physical throughput of natural resources from which all 

goods and services are ultimately derived (Georgescu-Roegen, 1971; Daly, 1985). Sustainable economic activity 

that 'meets the needs of the present without compromising the ability of future generations to meet their own 

needs' (WCED, 1987) has to stay within an environmentally sustainable scale: the ecosystem has to absorb waste 

and recycle the inputs which are required for physical production (Daly, 1992). As capital is highly dependent on 

energy usage, the regeneration rate and the availability of renewable energy resources are the final constraints to 

the production process (Dale et al., 2012). However, the importance of energy and natural resources for economic 

production is systematically underestimated in many economic theories (Kümmel, 2011). Thus, analyzing the 

physical and environmental sustainability requires studying the interdependencies between the ecosystem and 

the economy. Georgescu-Roegen (1971) has emphasized that models need to track the physical funds and flows 

of physical variables such as energy explicitly. Within ecological economics, monetary questions are studied only 

recently (Berg et al., 2015; Dafermos et al., 2017).  

2.3 Common ground: Ecological Macroeconomics 

From a philosophy of science perspective, synthesis of different economic paradigms seems possible, if these 

share similar ontological and methodological approaches (Dobusch and Kapeller, 2012). Several authors have 

explicitly argued that post-Keynesian economics and Ecological economics share substantial common ground, and 

are ripe for a synthesis. Ontological similarities have been recognized in terms of consumption, production theory, 

cumulative causation (path dependency), uncertainty as opposed to computable probability and the irreversibility 

of historical time (Gowdy, 1991; Lavoie, 2006; Holt et al., 2009; Kronenberg, 2010). Post-Keynesians argue that 

this uncertainty and instability is inherent in economic processes while ecological economists locate the reason 

within environmental risks. Therefore, intertemporal optimization with unlimited time horizon and rational 

expectations about the future seems unrealistic. Ecological economists arguing that consumption is a central 

driver of economic growth also seem to agree with the Keynesian argument that effective demand matters. 

From a methodological point of view, there are similarities in looking at the world as composed of a complex 

system of stocks and flows, ecological economists mostly from a physical perspective and post-Keynesian authors 

from a monetary perspective. This lends itself for economic modelling and is therefore suitable for bridging the 

gap between ecological and post-Keynesian models. Models that integrate monetary and ecological issues may be 

helpful to study pressing problems such as climate change, which are neither purely economic, nor purely 

environmental, nor purely physical, but rather are all the above. The recent development of 'ecological 

macroeconomics' has developed exploiting these similarities (Berg et al., 2015; Rezai and Stagl, 2016), for example 

for studying the stability of a non-growing economy (Richters and Siemoneit, 2017). 

The only approach known to us to integrate the physical framework by Georgescu-Roegen and the monetary 

stock-flow consistent framework is Dafermos et al. (2017). Different to their very complex and interdependent 

model, we offer a simple toy model that may help to understand and combine the two paradigms. The model 

treats physical and monetary stocks and flows explicitly and is coupled to a minimal environmental model.  



 

2.4 The stock-flow fund-service approach 

Before we get to the description of the model, we shortly want to outline the idea of the stock-flow fund-service 

approach (SFFS), which provides a common framework for model development.  

Stocks represent an amount of energy, matter or money at a point of time given in J, kg or €, whereas flows 

represent a stream of matter, energy or money from one stock to another in a certain period of time, given or J/s, 

kg/s or €/s. The distinctive feature is, that stocks can be instantaneously consumed or transferred as a whole 

(Georgescu-Roegen, 1971). This concept is also used in post-Keynesian SFC models, where the balance sheets 

include the financial stocks and the transaction matrix the financial flows from one sector to another (Godley and 

Lavoie, 2012), which we will describe below.  

Besides the stock-flow approach it is useful to introduce another concept, as proposed by Georgescu-Roegen 

(1971, p. 224 ff.) – the fund-service approach, which is not included in the post-Keynesian theory. A fund 

represents the counterpart to stock/flows. They cannot be instantaneously consumed, such as the service of the 

worker to assemble a good (Georgescu-Roegen, 1971, p. 226) or the sun to provide high-energetic radiation. One 

square meter of land does only receive a certain maximum amount of ‘radiation service’ at any moment in time. 

Therefore, the amount of funds includes the time dimension (𝑠𝑒𝑟𝑣𝑖𝑐𝑒 ⋅ 𝑡𝑖𝑚𝑒) whereas the service is without a 

time dimension. Note that this is the other way around for stocks and flows.1  

Here we also find the impossibility of complete substitutability, which is often criticized by ecological and post-

Keynesian economists likewise (Kronenberg, 2010). Stocks and funds are qualitatively different. So, one cannot be 

replaced by the other. If one needs a flow as energy, e.g. for production, one can have as much capital as she 

wants. If there is no energy left for consumption, there is no possibility to substitute it by something else. This is 

reflected in the concept of strong sustainability  (Ott and Döring, 2008), as counterpart to the weak formulation, 

which is mostly used by environmental economists such as Perman (2011). 

  

 

1  In the theory of monetary economics, the term fund is used in the label “flow of funds”. However, this 

represents financial transfers. Note that the meaning used here differs from this definition.  



 

3 Description of the monetary-physical Stock-flow fund-service model 
In the following we describe the SFFS model for a one good economy which includes physical services as well as 

energy and monetary flows. The model represents a dynamical system in discrete time. Both monetary and 

physical flows are equally represented. Its monetary representation is based on the model SIM of Godley and 

Lavoie (2012), whereas money is replaced by government bills and interest payments are included in addition.2  

For a better understanding, we differentiate physical flows with upper index 𝑝 from monetary flows without an 

upper index. The former is measured in Joule 𝐽 per time step as measure for energy, the latter in € per time step 

as measure for money. The monetary flows are described in Table 1, physical flows and services in Table 2. Both 

are represented in Figure 1. In the tables, the direction of the flows is indicated by the signs. Positive values are 

uses of the stock and represent outflows, while negative values are sources and represent inflows accordingly. 

Time is indicated by the index 𝑡, whereas 𝑡 (𝑡 − 1) indicates the stock/flow at the end of the current (previous) 

period. In the diagram, the different sectors described by their balance sheets are connected by monetary flows 

depicted with solid arrows. Flows of physical goods are dashed, while the transfer of energy is indicated by broad, 

filled arrows. 

The economy consists of households, one production sector and one government sector3. Consumption 

expenditures 𝐶 flow from households to the production sector. In this sector, products are produced and the 

incoming monetary flows from consumption are fully paid as wages 𝑌 to the households4. For simplicity 

government engages workers directly for governmental duties.  

Besides of consumption, households use their income from wages, government expenditures and interest on 

government bills for paying taxes 𝑇 to the government. All remaining income is accumulated as government bills 𝛥𝑀ℎ.5 Accordingly, the government receives taxes, pays interest on government bills, expenditures to workers 

and the amount of bills issued by the government increases by 𝛥𝑀𝑔.  

The system is closed “in the sense that everything comes from somewhere and everything goes somewhere,” with 

this framework, “there are no black holes” (Godley and Lavoie, 2012, p. 38). Also, the balance sheet – the stocks 

 

2 Bills are a short-term debt obligation backed by the government with a maturity of less than one year, 

here: in one period.  

3 SFC model with various sectors, banks and different financial assets can be found in Godley and Lavoie 

(2012) or Berg et al. (2015). 

4 For the sake of simplicity we neglect the differentiation between profits and wages. 

5 It is often noted, that sign for the change in financial assets is counterintuitive, because the acquisition of 

government bills seems to be an incoming flow resulting in a positive sign. However, this must be interpreted as 

households paying from the money they earn into their stock of government bills. Even if this is an action 

happening within the household it is a use of money which consequently carries a negative sign (Godley und Lavoie 

2012, S. 40). 



 

– as provided in Figure 1 cancel out as the bills held by households 𝑀ℎ must always be equal to the bills issued by 

the government 𝑀𝑔. 

Table 1: Monetary transaction-flows matrix 

 

Figure 1: Monetary Stocks/flows and physical funds/services of the model 

 

The monetary economy is embedded into an ecological system, as shown in Figure 1. The interaction between 

environment and economy occurs by harvesting biomass to provide low entropy energy (exergy) input for the 

production of the economy 𝐸𝑝. Within the production sector this biomass is transformed into an energy good 

such as oil. The biomass can be thought of as sunflowers, corn, or similar plants which are suitable for 

transformation into energy inputs for production and for consumption likewise and are renewable. 

The good created is used for production itself 𝑌𝑝𝑝𝑝  or transferred to the household 𝑌𝑝ℎ𝑝 . There it is finally consumed 

(𝐶𝑝 ) and ends up as heat (anergy) on planet Earth 𝐻𝑝𝑒𝑝 . Same is true for the consumption within the production 

process 𝐻𝑝𝑒𝑝 . It becomes obvious that the economic subsystem is fully dependent on harvest, without which no 

production is possible. However, the reproduction of biomass 𝛥𝑆 is an environmental service and not a flow and 

therefore does not happen instantaneous but needs time, as shown in 2.4. The service increases the stock of 

biomass, from which harvest is subtracted. Consequently, the rate of harvest at maximum has to equal the rate of 

renewal for the system to be ecologically sustainable. 

Table 2: Physical transaction flow-service matrix 

Monetary Transaction matrix 

 Households Production Government ∑ 

Consumption −𝐶 +𝐶  0 
Government exp. +𝐺  −𝐺 0 

Wages +𝑌 −𝑌  0 

Taxes −𝑇  +𝑇 0 
Interest Payments +𝑟𝑀𝑡−1  −𝑟𝑀𝑡−1 0 

Change in bills −𝛥𝑀ℎ  +𝛥𝑀𝑔 0 ∑ 0 0 0 0 



 

For the sake of completeness in Table 2 we also included low and high entropy energy streams from space to the 

Earth, to have a realistic energy balance. In doing so, the physical system is closed in the sense that everything 

that goes somewhere comes from somewhere. A constant inflow of exergy enters the system as sunlight (𝑅𝑠𝑝), 

some parts are transformed to biomass (𝑅𝑠𝑝𝑝 ) and changes, together with harvest (𝐸𝑝 ) the stock of biomass (𝛥𝑆). 

The radiation that is not metabolized is dissipated on the Earth’ surface and in the atmosphere (𝐻𝑠𝑒𝑝 ). Harvest (𝐸𝑝) 

and consumption of biomass by households and firms turn the stored energy into anergy (𝐻𝑝𝑒𝑝 , 𝐻ℎ𝑒𝑝 ) and reduce 

the stock of biomass. A constant flow of anergy leaves the Earth as radiation to space (𝐻𝑒𝑠𝑝 ). To determine the 

distribution of energy changes to space and Earth (ΔHep, ΔHsp), a climate model would be needed.  

One can easily see the irreversibility of the energy consumption process here. As Georgescu-Roegen (1971, p. 281) 

puts it: "[The economic process] is not circular, but unidirectional. As far as this facet alone is concerned, the 

economic process consists of a continuous transformation of low entropy into high entropy, that is, into 

irrevocable waste or, with topical term, into pollution." (Georgescu-Roegen, 1971, p. 281). Pollution, also referred 

as heat emissions or anergy, can neither be used for the reproduction of biomass nor the production process. 

Rather all exergy consumed finally ends up as heat in on Earth. For climate models these anthropogenic heat 

emissions are estimated to be about 0.0025 Wm-2 (Stocker et al., 2013, p. 14). Besides of the ecological constraints 

given by the reproduction of biomass, we face another hidden constraint here. If the amount of heat emissions 

increases to exceed 3 ⋅ 1014 W the economy crosses the so called “heat barrier” (Buttlar, 1975), where global 

climate changes will occur even without the anthropogenic greenhouse effect (Kümmel, 2011, p. 179). This could 

be included using for example a simple climate model as provided in Berg et al. (2015).  

For the sake of simplicity, we will refer to the left part of Table 2 framed in black in the remainder of this paper 

and leave the rest open for further research. In the following we will describe the balance equations and the 

behavior of the system.  

3.1 Monetary behavioral equations 

The model is consumption driven, meaning that the level of consumption of households 𝐶𝑡determines the level 

of production 𝑌𝑡.  

 Households Production Biomass, 
Low entropy 

Heat on Earth 
High entropy 

Space ∑ 

Flows 

Household 
consumption 

−𝐶𝑝   +𝐻ℎ𝑒𝑝   0 

Product transfer +𝑌𝑝ℎ𝑝  −𝑌𝑝ℎ𝑝     0 

Energy 
consumption 

 −𝑌𝑝𝑝𝑝   +𝐻𝑝𝑒𝑝   0 

Harvest  +𝐸𝑝 −𝐸𝑝   0 
Dissipation    −𝐻𝑒𝑠,𝑝  +𝐻𝑠𝑝 0 

Services 

Change in stock 
of Energy 
 

  −𝛥𝑆 
(biomass) 

−𝛥𝐻𝑒𝑝 −𝛥𝐻𝑠𝑝 0 

Radiation and 
absorption 

  +𝑅𝑠𝑏𝑝  +𝐻𝑠𝑒𝑝  −𝑅𝑠𝑝 0 ∑ 0 0 0 0 0 0 

 



 

𝑌𝑝ℎ,𝑡 = 𝐶𝑡 . (1) 

To simplify the model, we assume that government expenditures 𝐺𝑡 = 𝐺 are constant over time and go directly 

to the households.  All earnings by the production sector 𝐶𝑡 are paid to households as wages. Capital is not included 

in the model.  

Additionally to wages, households receive income by interest payments with interest rate 𝑟 on bills 𝑀𝑡 from the 

government sector. 𝑟 is assumed to be exogenously given and constant. Taxes with rate 𝜃 are paid on income, so 

disposable income 𝑌𝐷,𝑡 and taxes 𝑇𝑡 are given by 𝑌𝐷,𝑡 = (1 − 𝜃)(𝐶𝑡 + 𝐺𝑡 + 𝑟𝑀𝑡), (2) 𝑇𝑡 = 𝜃(𝐶𝑡 + 𝐺𝑡 + 𝑟𝑀𝑡). (3) 

The discrete equation of motion for the stock of bills (𝑀ℎand 𝑀𝑔that are identical) is given by  𝑀𝑡 = 𝑀𝑡−1 + 𝑌𝐷,𝑡 − 𝐶𝑡 . (4) 

Bills of the previous period 𝑀𝑡−1 is increased by disposable income less realized consumption 𝐶𝑡. Note that 

households have a consumption target 𝐶𝑡𝑇, which is different to realized consumption 𝐶𝑡. It is determined by the 

propensity to consume out of disposable income of the last period (the first term) and out of wealth (the second 

term)6  𝐶𝑡𝑇 = 𝑐𝑦(1 − 𝜃)(𝐶𝑡−1 + 𝐺𝑡−1 + 𝑟𝑀𝑡−1) + 𝑐𝑀𝑀𝑡−1. (5) 

We differentiate between targeted and realized consumption 𝐶𝑡 because targeted consumption may be decreased 

due to ecological constraints, which will be the focus of the physical equations (s. Equation (11)). For targeted 

production, it follows 𝑌𝑝ℎ,𝑡𝑇 = 𝐶𝑡𝑇 . (6) 

3.2 Physical flow equations 

Before producers can produce anything, there must be a stock of biomass. We differ here from Heyes (2000) and 

Lawn (2003) and assume that biomass is not growing exponentially if undisturbed, but as logistic growth. These 

growth functions are very common in environmental modelling (Wainwright and Mulligan, 2013).  

St = St−1 + St−1a (1 − St−1Smax) − Et with 0 < a < 2.6 
(7) 

The growth function can be thought of as a S-curve, whereas the stock is limited to Smax. For small St−1 the stock 

of the next period St does only increase exponentially, for St−1 = 12 Smax absolute growth is maximum with ΔS =14 aSmax to decline as St−1 approaches Smax, as shown in Figure 2. Thus the relation between the radiation turned 

into biomass Rsbp = 𝑆𝑡−1𝑎 (1 − 𝑆𝑡−1𝑆𝑚𝑎𝑥) and the dissipation to heat on Earth Hsep  is altered depending on the biomass 

already available: In the desert, all radiation is turned to heat, as no radiation is transformed into biomass. The 

 

6  Consumption out of interest payments is neglected to simplify the model  



 

maximum absolute growth corresponds to the optimal use of radiation input, thus 
14 aSmax = μRsp with μ < 1 

because of sunlight reflection and efficiency of photosynthesis. 

Physical and monetary flows are linked by the fixed parameter price p ∈ €J  to physical flows.  

𝐶𝑡 = 𝑝 ⋅ 𝐶𝑡𝑝;    𝐶𝑡𝑇 = 𝑝 ⋅ 𝐶𝑡𝑇,𝑝;    𝑌𝑝ℎ,𝑡𝑇 = 𝑝 ⋅ 𝑌𝑝ℎ,𝑡𝑇,𝑝  (8) 

Price adaptations play a crucial role in many dynamic models. Nevertheless, we chose to treat prices as constant 

parameters in our model to avoid a detailed discussion of the strategic determination of prices and the conception 

of the firm in post-Keynesian theory, and because the added dimension would have made the stringent stability 

analysis less comprehensible. The inclusion of price adaptation may significantly alter the results. 

Total targeted production is determined by consumption and resulting own energy requirements of the 

production sector 𝑌𝑝𝑝,𝑡𝑝 . We assume the requirements of energy being proportional to production with 0 <  𝜖 <  1.  𝑌𝑡𝑇,𝑝 = 𝑌𝑝𝑝,𝑡𝑝 + 𝑌𝑝ℎ,𝑡𝑇,𝑝 = (1 + 𝜖)𝐶𝑡𝑇,𝑝. (9) 

The stock of biomass is decreased by harvest 𝐸𝑡 in kg which satisfies the need for biomass of production for total 

production 𝑌𝑡𝑝. To account for different units 𝛾 [𝑘𝑔𝐽 ] is introduced to transfer the stock of biomass, given in kg, to 

energy units. 𝐸𝑡 = 𝛾𝑌𝑡𝑝 (10) 

To include the ecological limits on harvest which are given by the stock of biomass 𝑆𝑡 at period 𝑡 the following 

equation constrains total targeted harvest 𝐸𝑡𝑇 = 𝑌𝑡𝑇,𝑝including energy requirements by the production sector to 

realized production 𝐸𝑡𝑝. 

𝐸𝑡 = 𝐸𝑡𝑇1 + 𝐸𝑡𝑇 𝑆𝑡−1⁄  = 𝛾(1 + 𝜖)𝐶𝑡𝑇𝑝 (1 + 𝛾 (1 + 𝜖)𝐶𝑡𝑇 (𝑝 ⋅ 𝑆𝑡−1)⁄ ) (11) 

 

Figure 2: Example of logistic growth for different initial values and maximum growth rate 𝑎 = 0.1 (left) and constrained 
production (right) following Equation (11) with  𝑆𝑡−1 = 1.  



 

The rationale behind Equation (11) is that if harvest is small compared to the stock of biomass (as is for example 

the case for forestry in most countries), the realized harvest is close to identical to the desired one, to demand. 

On the other hand, if targeted harvest is very high, the dynamical system has to guarantee that the harvest does 

not exceed the available stock, which is impossible. This equation is an example how such a ‘smooth rationing’ in 

the case of ecological scarcity can be implemented. Compared to a piecewise linear function, it avoids 

discontinuities which would make the stability analysis much more challenging. 

It follows for the realized physical consumption of households with Equation (8) is given by  

𝐶𝑡𝑝 = 𝑌𝑡𝑝1 + 𝜖. (12) 

3.3 System of equations 

Accordingly, we can derive the equations that determine the behavior of the system. To simplify the notation, we 

use the relation 𝛾𝜖 = (1 + 𝜖)𝛾 and 𝑌𝑡𝑝 = 𝑌𝑡,𝜖𝑝1+𝜖. 𝑌𝑡𝑝 differs from 𝑌𝑡,𝜖𝑝  by not including internal energy consumption of 

production. 

𝑌𝑡𝑝 = 𝐶𝑡𝑇𝑝 + 𝛾𝜖𝐶𝑡𝑇 𝑆𝑡−1⁄  
(13) 

𝑆𝑡 = 𝑆𝑡−1 + 𝑆𝑡−1𝑎 (1 − 𝑆𝑡−1𝑆𝑚𝑎𝑥) − 𝛾𝜖𝑌𝑡𝑝𝑤𝑖𝑡ℎ0 < 𝑎 < 2.6 
(14) 

𝑀𝑡 = 𝑀𝑡−1 + (1 − 𝜃)(𝐺0 + 𝑟𝑀𝑡−1) − 𝜃𝑌𝑡𝑝𝑝 (15) 

With  𝐶𝑡𝑇 = 𝑐𝑦(1 − 𝜃)(𝑝𝑌𝑡−1𝑝 + 𝐺0 + 𝑟𝑀𝑡−1) + 𝑐𝑀𝑀𝑡−1 (16) 𝑌𝑡,𝜖𝑝 = 𝑌𝑡𝑝(1 + 𝜖) (17) 

It is a three-dimensional system depended on 𝑀𝑡 , 𝑌𝑡𝑝and 𝑆𝑡 which determines the behavior of the system. 

Equations (16) and (17) are only substitutes for the values of 𝐶𝑡𝑇 and 𝑌𝑡,𝜖𝑝 , so the system remains three-dimensional. 

For the simulation, one has to know the initial values of 𝑌0𝑝, 𝑀0 and 𝑆0. With these initial conditions we can 

calculate 𝐶𝑡𝑇  according to Equation (16) by using values known from the previous period 𝐶𝑡−1 and 𝑀𝑡−1. The result 

is substituted into 𝑌𝑡𝑝 from Equation (13) which goes into 𝑆𝑡 via Equation (14) and 𝑀𝑡 via Equation (15). This 

procedure is repeated for as many time steps as preferred.  

  



 

4 Simulation results of the model 
To give a first intuition of the model behavior, we obtained simulation results for the model with Python. From 

these, we can derive three different kinds of model behavior, represented in Figure 3. The left graph shows an 

ecologically and monetarily stable system that converges towards a stationary state for 𝑀, 𝑆, and 𝑌. In this case 

economically driven harvest and ecologically driven reproduction are equal leading to an ecological stability. 

Furthermore, the system is monetarily stable, due to high levels of consumption out of wealth compared to the 

interest rate. We will give a detailed explanation of this behavior in Section 5. In the middle graph, the system 

tends to a monetarily stable stationary state, indicated by the concave shape of 𝑀 and 𝑌. However, as one can 

see from the monotonically declining course of 𝑆 the ecological system is continuously overused leading to an 

ecological collapse at 𝑡 = 360 causing an immediate economic collapse. However, since the government 

continues to pay interests on bills the monetary stock continuously increases. A more drastic result is obtained in 

the ‘explosive’ right graph of Figure 3. Due to high interest rates compared to consumption out of wealth, the 

system is monetarily unstable and grows out of bound, indicated by the convex shape of 𝑀. As the economy 

cannot grow forever due to ecological constraints, it collapses at 𝑡 = 150 – just like in the middle graph – because 

it continuously overuses the ecology. Note that in this scenario, the government debt to GDP ratio increases 

unlimitedly even before the ecological collapse – thus we don’t see stable growth but rather a debt spiral where 

the consumptive government expenditures become negligible compared to debt services, not indicating economic 

stability. Furthermore, the model abstracts from expectations that might cause negative output effects due to 

high debt to GDP ratios.  

 

Figure 3: Time evolution of the system for different propensities to consume out of wealth. Parameters 𝜃 = 0.5, 𝑐𝑦 = 0.8, 𝑎 =0.1, 𝑝 = 4, 𝛾 = 1.1, 𝑆𝑚𝑎𝑥 = 100, 𝐺 = 4, 𝑟 = 0.1 and initial values 𝑆0 = 100, 𝑌0𝑝 = 1, 𝑌0 = 𝑝𝑌0𝑝 = 4,𝑀0 = 10. Left graph: 
monetarily and ecologically stable system with 𝑐𝑚 = 0.06. Center: monetarily stable, but ecologically unstable economy with 𝑐𝑚 = 0.04.  Right graph: monetarily and ecologically unstable ‘explosive’ system with 𝑐𝑚 = 0.01. 



 

5 Stability Analysis of the model 
To analyze the model, explain the differences pictured in Figure 3 and derive more insights in its general behavior, 

we conducted a stability analysis of the three-dimensional system.7 For the calculation of fixed points, where no 

change in either variable occurs, we must state that 𝑆𝑡 = 𝑆𝑡−1;    𝑀𝑡 = 𝑀𝑡−1;    𝑌𝑡𝑝 = 𝑌𝑡−1𝑝 . (18) 

In doing so, we can derive the coordinates of the fixed points (see Appendix A). The stationary state for the biomass 

stock 𝑆∗ is the closed form solution of the cubic equation  

𝑎𝛾𝜖 𝑆∗ (1 − 𝑆∗𝑆𝑚𝑎𝑥)( 11 − 𝑎 (1 − 𝑆∗𝑆𝑚𝑎𝑥) − 𝑐𝑦 − 𝑐𝑚𝜃(1 − 𝜃)𝑟)⏟                        𝐹(𝑆)
= −𝑐𝑚𝑟𝑝 𝐺. (19) 

Reasonable results can be obtained for 𝑆∗ ∈ [0, 𝑆𝑚𝑎𝑥], whereby the equation is solvable for 𝑟 ≠ 0; 𝜃 ≠ 1; 𝑝 ≠0; 𝑎 ≠ 1; 𝛾𝜖 ≠ 0. 
Knowing 𝑆∗ we can calculate the stationary states of production 𝑌𝑝∗ and the stock of bills 𝑀∗ with 

𝑌𝑝∗ = 𝑎𝛾𝜖 𝑆∗ (1 − 𝑆∗𝑆𝑚𝑎𝑥), 
 

(20) 

𝑀∗ = 𝜃𝑝𝑌𝑝∗ − (1 − 𝜃)𝐺1 − 𝜃𝑟 . (21) 

From Equations (19) to (21) we can conclude, that the number of fixed points depends solely on the number of 

solutions for Equation (19). Since by definition S∗ ∈ [0, 𝑆𝑚𝑎𝑥] we can state further, that no solution exists and 

accordingly, there will be no stationary state within this domain, if 𝐹(𝑆∗) > 0. In this case, the stock of biomass 𝑆∗ < 0 or 𝑆∗ > 𝑆𝑚𝑎𝑥 . We can interpret this result as a global instability, which leads to over-depletion of the 

biomass stock and consequently to the collapse of the ecological system. As shown in Appendix B 𝐹(𝑆∗) > 0 for 

any 𝑆∗ ∈ [0, 𝑆𝑚𝑎𝑥]if  
𝑐𝑟 = 𝑐𝑚𝑟 < (1 − 𝑐𝑦)(1 − 𝜃)𝜃 . (22) 

This result is equal to the relation derived for the SIM model of Godley and Lavoie (2012) by Richters and Siemoneit 

(2017). However, in contrast to this paper, they do not consider ecological variables. Note, that this relation is 

independent of the biomass growth rate 𝑎. Therefore, it can be interpreted as the monetary stability condition. If 

Inequality (22 is fulfilled, consumption and production will increase unboundedly which necessarily leads to an 

ecological collapse at some point in time in our model, even for very high ecological regeneration. However, it is 

possible to have positive interest rates within a monetarily stable economy. In this case, positive interest rates 

 

7  For general information on stability analysis see Argyris et al. (2015). An application to stock-flow 

consistent models is provided by Richters and Siemoneit (2017).  



 

have a positive effect on the stock of government bills of the economy, as they determine the speed of the 

accumulation of bills. If the dampening effect by consumption out of wealth 𝑐𝑚 is high compared to the interest 

rate 𝑟 the economy becomes stable (compare Figure 1).  

To analyze the conditions for stability dependent on changes on certain parameters, as for example the ratio 𝑐𝑟of 𝑐𝑚 and 𝑟, we can convert Equation (19) to an implicit function as follows:  

𝐾(𝑆∗, 𝑐𝑟) ≔ 𝑎𝛾𝜖 𝑆∗ (1 − 𝑆∗𝑆𝑚𝑎𝑥)( 11 − 𝑎 (1 − 𝑆∗𝑆𝑚𝑎𝑥) − 𝑐𝑦 − 𝑐𝑟𝜃(1 − 𝜃)) + 𝑐𝑟𝑝 𝐺 = 0. (23) 

We can now picture the solutions for Equation (19) for different values of 𝑐𝑟 by plotting the implicit function of 

Equation (47), as shown in the bifurcation diagram in Figure 4.  

 

Figure 4: Bifurcation diagram for the stationary state of the biomass stock S and the consumption out of wealth - interest rate 
ratio 𝑐𝑟. Parameter values: 𝜃 = 0.5, 𝑐𝑦 = 0.8, 𝑎 = 0.1, 𝐺 𝑝⁄ = 1, 𝛾𝜖 = 1.1, 𝑆𝑚𝑎𝑥 = 100. 
On the x axis, we see 𝑐𝑟 = 𝑐𝑚𝑟  and on the y-axis the solutions 𝑆∗, which are the fixed points for any value of 𝑐𝑟 with 𝜃,𝑎, 𝑝, 𝐺, 𝛾𝜖, 𝑆𝑚𝑎𝑥  and 𝑐𝑦 as fixed parameters. For 𝑐𝑦 < 0.44, no fixed point exists and the system becomes 

unstable. We can calculate this value by solving Equation (47) for 𝑐𝑟 = 𝐻(S∗) (see Appendix D) and deriving the 

minimum value for 𝑐𝑟 from 𝐻′(𝑆∗) = 𝑑𝐻(S∗)𝑑S∗ = 0 in the domain 𝑆∗ ∈ [0, 𝑆𝑚𝑎𝑥]. In general, we can derive the 

ecological stability condition ∄S∗ ∈ [0, 𝑆𝑚𝑎𝑥] 𝑖𝑓 𝑐𝑟 < 𝑚𝑖𝑛(𝐻(𝑆𝑚𝑖𝑛∗ )). (24) 

For 𝑐𝑟 > 0.44 the lower fixed point is unstable. Consequently, if the initial value for 𝑆0 is below the orange line in 

Figure 4 the system will not converge towards the stable fixed point, but collapse. If the initial condition is above 

the orange line, the system will converge towards the stable fixed point (blue line). Another way to obtain these 

conditions is by solving the Jacobian matrix at a fixed point 𝑆∗, which is derived and presented in Appendix C, and 

calculating the eigenvalues of the matrix. For 𝑐𝑟 = 1 the eigenvalues are derived for the fixed point below the limit 

point (𝑆𝐿∗ = 19.1) in Figure 4, and for the fixed point above the limit Point (𝑆𝐻∗ = 83.1):  𝜆𝑆𝐿∗ = (0.37 0.95 1.06), 𝜆𝑆𝐻∗ = (0.43 0.93 0.94). 



 

Since one of the eigenvalues of 𝑆𝐿∗ is higher than one, this fixed point is unstable. For 𝑆𝐻∗  all eigenvalues are lower 

than one, consequently this fixed point is stable and the system will converge to it.  

From the conditions in Equation (22) and (24) we can now plot a stability diagram (Figure 5), which shows the 

existence of stationary states at different values of 𝑐𝑚 and r.  

 

Figure 5: Stability diagram for the ecological stability condition and the monetary stability condition for different values of 
consumption out of wealth 𝑐𝑚and interest rates 𝑟 with 𝜃 = 0.5, 𝑐𝑦 = 0.8, 𝑎 = 0.1, 𝛾𝜖 = 1.1, 𝑆𝑚𝑎𝑥 = 100, 𝐺 𝑝⁄ = 1.  

This result adds further insights to the results derived by Richters and Siemoneit (2017) by adding an ecological 

dimension. If the ratio of 𝑐𝑚 and 𝑟 is above (below) the monetary stability condition (dashed line) the system is 

monetarily stable (unstable). This is equivalent to the results of the middle and right graph in Figure 3. Without 

ecological constraints, the stock of bills and the level of production would converge towards stationary states 𝑀 

and 𝑌𝑝. However, if we add ecological constraints the level of harvest associated with the production in the 

monetary stationary state might exceed what is regenerated by the biomass stock. Therefore, the system still 

collapses, if the ratio of 𝑐𝑚 and 𝑟 is between the two stability frontiers. If the stationary state level of harvest is 

equal to what is regenerated by the ecology the system reaches an ecologically and monetarily stable stationary 

state (see left graph of Figure 3). Consequently, if we assume that consumption out of wealth is exogenously given 

and below 0.44, which is the value for which instability may occur, interest rates must be low for the overall 

economy to be within ecological boundaries and work at a sustainable level of production.  

6 Conclusion 
Using a simple baseline model, this paper examines the interactions of financial assets, real physical goods and 

services, and the physical environment. It shows that post-Keynesian stock-flow consistent models can successfully 

be integrated with the study of physical stocks, flow and funds as suggested by Georgescu-Roegen. The model 

consistently integrates a demand driven monetary economy with ecological constraints. Ecological scale 

introduces a non-linearity into the model, leading to rich dynamics. Depending on parameters such as interest 

rates or government expenditures, we can observe three different states of the model: The first state is a stable, 

non-growing economy compatible with ecological stability. In the second case, the economy approaches a 

monetary stationary state while constantly degrading its ecological environment, causing an ecological and 

economic collapse. In the third case, exponential accumulation of monetary assets through interest income leads 



 

to ever increasing demand, ecological degradation and finally breakdown. One major factor driving these 

differences is the parameter ratio of consumption out of wealth and interest rate. If consumption out of wealth is 

low, low interest rates are needed for the model to converge towards a sustainable stationary state of production. 

The (relative) simplicity of the model makes it tractable and easier to analyze, while obviously neglecting several 

important aspects such as multiple goods, pricing, fixed capital, income distribution, complex financial assets or 

portfolio choice. Restricting our depiction to energy, even a treatment of physical mass, waste or carbon emissions 

is missing as provided by Taylor et al. (2016) or  Dafermos et al. (2017). The integration of these concepts can 

profit from a growing literature in post-Keynesian and ecological economics. Combining both approaches and 

integrating monetary and ecological issues may be helpful to determine the conditions under which a sustainable 

economy is possible, a problem that is neither purely economic, nor purely environmental, nor purely physical, 

but rather are all of the above. 



i 
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Appendix 

A. Derivation of Stability conditions 

We have the following system of equations: 

𝑌𝑡𝑝 = 𝐶𝑡𝑇𝑝 + 𝛾𝜖 𝐶𝑡𝑇 𝑆𝑡−1⁄  ⇔ 𝑌𝑡𝑝 = ( 𝑝𝐶𝑡𝑇 + 𝛾𝜖𝑆𝑡−1)−1, (25) 

𝑆𝑡 = 𝑆𝑡−1 + 𝑆𝑡−1 𝑎 (1 − 𝑆𝑡−1𝑆𝑚𝑎𝑥) − 𝛾𝜖𝑌𝑡𝑝  𝑤𝑖𝑡ℎ 0 < 𝑎 < 2.6, (26) 

𝑀𝑡 = 𝑀𝑡−1 + (1 − 𝜃)(𝐺 + 𝑟𝑀𝑡−1) − 𝜃𝑌𝑡𝑝  𝑝, (27) 

with  𝐶𝑡𝑇 = 𝑐𝑦(1 − 𝜃)(𝑝 𝑌𝑡−1𝑝 + 𝐺 + 𝑟𝑀𝑡−1) + 𝑐𝑀𝑀𝑡−1, 𝑌𝑡,𝜖𝑝 = 𝑌𝑡𝑝(1 + 𝜖). 
(28) 

With 𝑀𝑡 = 𝑀𝑡−1 = 𝑀∗ we can derive from (27)  

𝑀∗ = 𝜃𝑌𝑝∗𝑝 − (1 − 𝜃)𝐺(1 − 𝜃)𝑟 . (29) 

Accordingly, we can derive from (26)  

𝑌𝑝∗ = 𝑎𝛾 𝑆∗ (1 − 𝑆∗𝑆𝑚𝑎𝑥) ⇔ 𝛾𝜖𝑆∗ = 𝑎𝑌𝑝∗ (1 − 𝑆∗𝑆𝑚𝑎𝑥). (30) 

From (25) we can derive 1𝑌𝑝∗ = 𝑝𝐶𝑇 + 𝛾𝜖𝑆∗. (31) 

Substitute (29) in (28) to obtain 

𝐶𝑇 = 𝑌𝑝∗𝑝 (𝑐𝑦 + 𝑐𝑚 𝜃(1 − 𝜃)𝑟) − 𝑐𝑚𝑟  𝐺. (32) 

Substitute (30) and (32) in (31) and extract 𝑌∗ to obtain 

𝑌𝑝∗( 11 − 𝑎 (1 − 𝑆∗𝑆𝑚𝑎𝑥) − 𝑐𝑦 − 𝑐𝑚 𝜃(1 − 𝜃)𝑟) = − 𝑐𝑚𝑟 𝑝 𝐺, 
⇔ 𝑎𝛾𝜖 𝑆∗ (1 − 𝑆∗𝑆𝑚𝑎𝑥)( 11 − 𝑎 (1 − 𝑆∗𝑆𝑚𝑎𝑥) − 𝑐𝑦 − 𝑐𝑚  𝜃(1 − 𝜃)𝑟) = − 𝑐𝑚𝑟 𝑝 𝐺. 

(33) 

B. Derivation of the global instability 

The model is unstable for 𝐹(𝑆∗) = 11−𝑎(1− 𝑆∗𝑆𝑚𝑎𝑥)− 𝑐𝑦 − 𝑐𝑚 𝜃(1−𝜃)𝑟 > 0 if 𝑆∗ ∈ [0, 𝑆𝑚𝑎𝑥]. 



 

With 𝑐𝑟 = 𝑐𝑚𝑟  we can derive that this condition is fulfiled for 𝑐𝑟 < ( 11−𝑎(1− 𝑆∗𝑆𝑚𝑎𝑥)− 𝑐𝑦) 1−𝜃𝜃    .  
Derive min(( 11−𝑎(1− 𝑆∗𝑆𝑚𝑎𝑥)− 𝑐𝑦) 1−𝜃𝜃 ) if  𝑆∗ ∈ [0, 𝑆𝑚𝑎𝑥] to obtain the minimum possible value of ( 11−𝑎(1− 𝑆∗𝑆𝑚𝑎𝑥)−𝑐𝑦) 1−𝜃𝜃 . This is the case for 𝑆∗ = 𝑆𝑚𝑎𝑥. After substitution we can state 

if 𝑐𝑟 < (1 − 𝑐𝑦)(1 − 𝜃)𝜃 ⇒ 𝐹(𝑆∗) > 0 ∀𝑆 ∈ [0, 𝑆𝑚𝑎𝑥] (34) 

  



 

C. Derivation of the Jacobian 

Deriving the partial derivatives of each variable of the system of equations given by Equations (25) to (27) and 

using the following condition for the stationary state value, we can derive the Jacobian matrix. For 𝑌𝑡  we know8  

𝑌𝑡 = ( 𝑝𝐶𝑡𝑇(𝑌𝑡−1, 𝑀𝑡−1) + 𝛾𝜖𝑆𝑡−1)−1. (35) 

At the fixed point we know from Equations (30), (31) and (32):  

(𝐶𝑇∗)−1 = [𝑐𝑦 (1 − 𝜃)(𝑝 𝑌𝑝∗ + 𝐺) + (𝑐𝑚 + 𝑐𝑦(1 − 𝜃)𝑟)𝑀∗]−1 = 1𝑌𝑝∗𝑝 (1 − 𝑎 + 𝑎 𝑆∗𝑆𝑚𝑎𝑥), (36) 

𝑌𝑝∗𝑆∗ = 𝑎𝛾𝜖 (1 − 𝑆∗𝑆𝑚𝑎𝑥 ). (37) 

Using these relations, we can simplify the partial derivatives at the fixed point dependent on 𝑆∗: 𝑑𝑌𝑡𝑑𝑌𝑡−1 = (𝑌𝑝∗)2𝑝2𝑐𝑦(1 − 𝜃)(𝐶𝑇)−2 = 𝑐𝑦(1 − 𝜃) (1 − 𝑎 + 𝑎 𝑆∗𝑆𝑚𝑎𝑥)2, (38) 

𝑑𝑌𝑡𝑑𝑀𝑡−1 = (𝑌𝑝∗)2𝑝 (𝑐𝑚 + 𝑐𝑦 (1 − 𝜃)𝑟)(𝐶𝑇)−2 = 1𝑝 (𝑐𝑚 + 𝑐𝑦 (1 − 𝜃)𝑟) (1 − 𝑎 + 𝑎 𝑆∗𝑆𝑚𝑎𝑥)2, (39) 

𝑑𝑌𝑡𝑑𝑆𝑡−1 = 𝛾𝜖 (𝑌𝑝∗𝑆∗ )2 = 𝑎2𝛾𝜖 (1 − 𝑆∗𝑆𝑚𝑎𝑥 )2, (40) 

𝑑𝑀𝑡𝑑𝑌𝑡−1 = −𝜃𝑝𝑐𝑦(1 − 𝜃) (1 − 𝑎 + 𝑎 𝑆∗𝑆𝑚𝑎𝑥)2, (41) 

𝑑𝑀𝑡𝑑𝑀𝑡−1 = (1 + (1 − 𝜃)𝑟) − 𝜃(𝑐𝑚 + 𝑐𝑦 (1 − 𝜃)𝑟) (1 − 𝑎 + 𝑎 𝑆∗𝑆𝑚𝑎𝑥)2, (42) 

𝑑𝑀𝑡𝑑𝑆𝑡−1 = −𝜃𝑝𝛾𝜖 (𝑌𝑝∗𝑆∗ )2 = −𝜃𝑝 𝑎2𝛾𝜖 (1 − 𝑆∗𝑆𝑚𝑎𝑥 )2, (43) 

𝑑𝑆𝑡𝑑𝑌𝑡−1 = −𝛾𝜖𝑐𝑦(1 − 𝜃) (1 − 𝑎 + 𝑎 𝑆∗𝑆𝑚𝑎𝑥)2, (44) 

𝑑𝑆𝑡𝑑𝑀𝑡−1 = −𝛾𝜖𝑝 (𝑐𝑚 + 𝑐𝑦 (1 − 𝜃)𝑟) (1 − 𝑎 + 𝑎 𝑆∗𝑆𝑚𝑎𝑥)2, (45) 

𝑑𝑆𝑡𝑑𝑆𝑡−1 = 1 + 𝑎 − 2𝑎 𝑆∗𝑆𝑚𝑎𝑥 − 𝛾𝜖2 (𝑌𝑝∗𝑆∗ )2 = 1 + 𝑎 − 2𝑎 𝑆∗𝑆𝑚𝑎𝑥 − 𝑎2 (1 − 𝑆∗𝑆𝑚𝑎𝑥 )2. (46) 

With 𝑍𝐴 = (1 − 𝑎 + 𝑎 𝑆∗/𝑆𝑚𝑎𝑥)2 and 𝑍𝐵 = (1 − 𝑆∗𝑆𝑚𝑎𝑥)2this yields the Jacobian  

 

8 All variables used here are in Joule per time step, except of 𝑀 with is in € per time step. Therefore, we leave 

aside 𝑝 in the upper index of the variables to simplify the variable names. 



 

𝐽 = ( 
 𝑐𝑦(1 − 𝜃) 𝑍𝐴 1𝑝 (𝑐𝑣 + 𝑐𝑚(1 − 𝜃)𝑟) 𝑍𝐴 1𝛾 𝑎2𝑍𝐵−𝜃𝑝𝑐𝑦(1 − 𝜃) 𝑍𝐴 (1 + (1 − 𝜃)𝑟) − 𝜃(𝑐𝑣 + 𝑐𝑚(1 − 𝜃)𝑟) 𝑍𝐴 − 𝜃𝑝𝛾 𝑎2𝑍𝐵−𝛾𝑐𝑦(1 − 𝜃) 𝑍𝐴 − 𝛾𝑝 (𝑐𝑣 + 𝑐𝑦(1 − 𝜃)𝑟)𝑍𝐴 1 + 𝑎 − 2𝑎 𝑆∗𝑆𝑚𝑎𝑥 − 𝑎𝑍𝐵) 

 
. 

(47) 

 

D. Derivation of 𝒄𝒓 = 𝑯(𝑺∗) 
We can convert (33)) to 

𝐻(𝑆∗) ≔ 𝑐𝑟 = 𝑎 𝑆∗(𝑆𝑚𝑎𝑥 − 𝑆∗) ((𝑆𝑚𝑎𝑥 − 𝑆∗)𝑎 𝑐𝑦 + 𝑆𝑚𝑎𝑥(1 − 𝑐𝑦)) (1 − 𝜃)𝑝((𝑎𝜃𝑝𝑆∗(𝑆𝑚𝑎𝑥 − 𝑆∗) +  𝐺𝛾(1 − 𝜃)𝑆𝑚𝑎𝑥)) (𝑆𝑚𝑎𝑥 − 𝑎(𝑆𝑚𝑎𝑥 − 𝑆∗)).   (48) 

 


