Stock-Flow Consistent Input-Output Models

Oliver Richters

19. Mai 2017

TABLE OF CONTENTS

- Introduction
- Stock-Flow Consistent Input-Output model

UNIVERSITÄT OLDENBURI

- Study energy price shocks
- Conclusions

merging different strands of economic theory

GOAL

- merging different strands of economic theory
- synthesizing Stock-Flow Consistent (SFC) models, Input-Output (IO) models, and Ecological macroeconomics
- flows of money, goods and products and physical materials in the economy and the natural environment

ECOLOGICAL AND POST-KEYNESIAN ECONOMICS

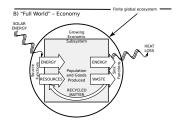
Similarities:

- consumption & production theory
- ► irreversibility of historical time, path dependency

500

fundamental uncertainty (not only risk)

DIFFERENCES


Post-Keynesian:

- macroeconomic theory, focus on finance, endogenous money
- emphasis on pushing demand

Ecological Economics:

- economy as subsystem of ecological system
- growth driven by energy and material use

A finite global ecosystem relative to the growing economic subsystem (after Daly, 1990; Goodland and Daly, 1990)

STOCK-FLOW CONSISTENT MODELS

- model money flowing through monetary economy
- stocks generate flows, flows change stocks of money
- endogeneous money creation via loan origination

[Lavoie/Godley 2007]

INDUSTRY INTERLINKAGES: INPUT-OUTPUT (IO)

 flows of goods and services through sectors of real economy

INDUSTRY INTERLINKAGES: INPUT-OUTPUT (IO)

- flows of goods and services through sectors of real economy
- $a_{ii} \ge 0$: flow of inputs from sector *i* to sector *j*

	PRODUCERS AS CONSUMERS					FINAL DEMAND							
		Agric.	Mining	Const.	Manuf.	Trade	Transp.	Services	Other	Personal Consumption Expenditures	Gross Private Domestic Investment	Govt. Purchases of Goods & Services	Net Exports of Goods & Services
	Agriculture												
S	Mining			0									
ERS	Construction												
ğ	Manufacturing							·					
ğ	Trade												
PRODUC	Transportation			1									
ш.	Services			0									
	Other Industry												
ALUE ADDED	Employees	Employee compensation											
	Business Owners and Capital	Profit-type income and capital consumption allowances								GROSS DOMESTIC PRODUCT			
¥	Government	Indirect business taxes											

Figure 1.1 Input–Output Transactions Table

source: Miller/Blair 2009

INDUSTRY INTERLINKAGES: INPUT-OUTPUT (IO)

- flows of goods and services through sectors of real economy
- $a_{ij} \ge 0$: flow of inputs from sector *i* to sector *j*
- ► vectors: *x*: gross output. *d*: net output (GDP)

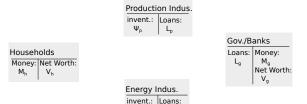
$$x = \mathbf{a}x + d \tag{1}$$

$$\boldsymbol{x} = (\boldsymbol{1} - \boldsymbol{a})^{-1} \boldsymbol{d}$$
 (2)

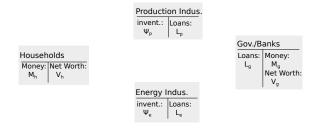
including prices *P_i*:

$$A_{ij} = a_{ij}P_i. aga{3}$$

RIPE FOR A SYNTHESIS

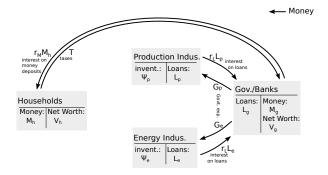

- analyze the interplay of economic decisions, money policy and ecological impact
- important for macroeconomic management
- luckily: no theoretical impediments [Gowdy 1991, Kronenberg 2010]

STOCK-FLOW CONSISTENT INPUT-OUTPUT MODEL


ACCOUNTING IDENTITIES – BALANCE SHEET MATRIX

Ψ_ L

ACCOUNTING IDENTITIES – BALANCE SHEET MATRIX

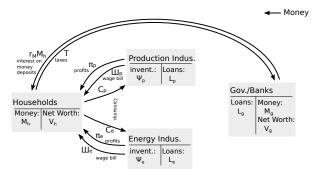


	Households	Industry $i \in \{1,, n\}$	Government	Σ
Money Deposits	$+M_h$		$-M_g$	0
Loans		$-L_i$	$+L_g$	0
Inventories		$+\Psi_i$		$+\sum_{i} \Psi_{i}$
Net Worth	$-V_h$	0	$-V_g$	$-V_h - V_g$
Σ	0	0	0	0

Universität

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

GOVERNMENT / BANKING SECTOR



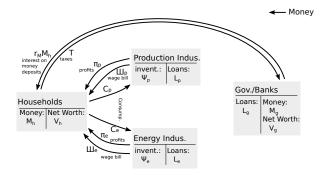
Pays interest on deposits, receives money on loans and taxes. Expenditures $g_p = G_p/P_p$, $g_e = G_e/P_e$ exogeneously given.

$$M_{g(t)} = (1 + r_M)M_{g(t-1)} + \sum_i G_i + \sum_i \Delta L_i - r_L \sum_i L_i - T.$$
 (4)

・ロト ・ 伊ト ・ ヨト ・ ヨ

Households

nominal and physical consumption, with P_i prices for different goods:


$$C = \alpha_1 (1 - \theta) \sum_j \operatorname{III}_j + \alpha_2 M_{h(t-1)}, \qquad (5)$$

$$c_i = CC_i^0 / P_i \qquad \text{with} \sum_j C_j^0 = 1.$$
(6)

ъ

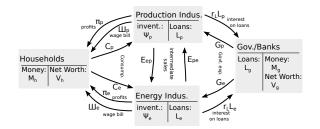
universität OLDENBURG

Households

disposable income *Y*, taxes *T* and update of money stock $M_{h(t)}$,

$$Y = \sum_{i} \prod_{i} + \sum_{i} \prod_{i} + r_{M} M_{h(t-1)}, \qquad T = \theta \cdot Y,$$
(7)

$$M_{h(t)} = M_{h(t-1)} + \sum_{i} \prod_{i} \sum_{i} \prod_{i} \sum_{i} C_{i} - T + r_{M} M_{h(t-1)}.$$
 (8)


Universität

500

ъ

INDUSTRY SECTORS – FOR n = 2

Money

DETERMINATION OF PRODUCED GOODS

 $s_{(t)}$: sales. $s_{(t)}^X$: expected sales. ψ^{\top} (Δ ψ^{\top}): targeted inventory (change). β , $\gamma < 1$: partial adjustment accelerators

$$s_{(t)}^{X} = \beta s_{(t-1)} + (1-\beta) s_{(t-1)}^{X}.$$
(9)

$$\psi^{\top} = \sigma^{\top} s^X_{(t)}, \tag{10}$$

$$\Delta \psi^{\top} = \gamma \left[\psi^{\top} - \psi_{(t-1)} \right].$$
(11)

$$\Rightarrow x = s_{(t)}^X + \Delta \psi_{(t)}^\top.$$
 (12)

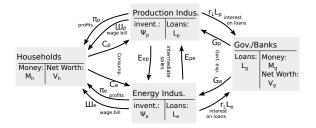
x: realized total production.

PRICING AND WAGES

wages:

$$l_i = \lambda_i x_i, \tag{13}$$

$$W = \sum_{i} III_{i} = \sum_{i} \omega_{i} \lambda_{i} x_{i}.$$
 (14)


pricing based on expected costs with markup $\phi_{i(t)}$:

$$P_{i(t)} = (1 + \phi_{i(t)}) \left[\omega_{i(t-1)} \lambda_{i(t-1)} + \sum_{k} P_{k(t-1)} a_{ki(t-1)} \right].$$
(15)

DETERMINATION OF REALIZED SALES AND **INVENTORIES**

Money

 $\boldsymbol{\xi}$: intermediate purchases. E_{ii} : money payments between sectors.

$$\boldsymbol{\xi} = \mathbf{a} \cdot \boldsymbol{x}. \tag{16}$$
$$E_{ij} = a_{ij} P_i \boldsymbol{x}_j. \tag{17}$$

Sac

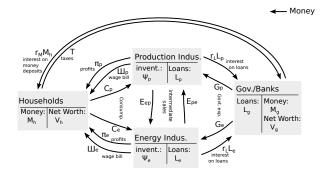
DETERMINATION OF NEW STOCKS

realized sales:

$$s_{(t)} = c + \xi + g.$$
 (18)

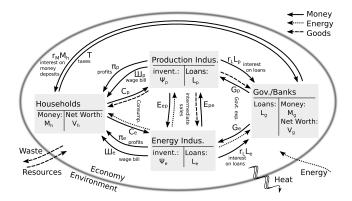
universität OLDENBUR

realized inventory stock and loans to finance them:


$$\psi_{(t)} = \psi_{(t-1)} + x_{(t)} - s_{(t)}, \tag{19}$$

$$L_{i(t)} = \Psi_{i(t)} = \psi_{i(t)} \left[\omega_{i(t-1)} \lambda_{i(t-1)} + \sum_{k} P_{k(t-1)} a_{ki(t-1)} \right].$$
(20)

profits distributed to households:


$$\Pi_{i} = C_{i} + G_{i} - \Pi_{i} + \sum_{j} E_{ij} - \sum_{j} E_{ji} - r_{L}L_{i(t-1)} + \Delta \Psi_{i}.$$
 (21)

ALL MONETARY FLOWS

FLOWS OF MATTER AND ENERGY IN THE ECOSYSTEM

UNIVERSITÄT

500

・ロト ・ 日 ・ ・ 日 ・ ・ 日

TRANSACTION MATRIX

	Households	Industr	Government	Σ	
	mousenonus	Current Account	Capital Acc.	Govenninent	2
Govt. Spending		$+G_i$		$-\sum_i G_i$	0
Taxes	-T			+T	0
Consumption	$-\sum_i C_i$	$+C_i$			0
Wage Bill	$+\sum_{i} \prod_{i}$	$-\mathrm{III}_i$			0
Intermediate Purchases		$\sum_i E_{ij} - \sum_j E_{ij}$			0
Profits	$+\sum_{i} \Pi_{i}$	$-\Pi_i$			0
Interest on Money Deposits	$+r_M M_{h(t-1)}$			$-r_M M_{g(t-1)}$	0
Interest on Loans		$-r_L L_{i(t-1)}$		$-r_M M_{g(t-1)} + \sum_i r_L L_{i(t-1)}$	0
Δ Money Deposits	$-\Delta M_h$			$+\Delta M_g$	0
Δ Loans			$+\Delta L_i$	$-\sum_i \Delta L_i$	0
Δ Inventory Value		$+\Delta \Psi_i$	$-\Delta \Psi_i$		0
Σ	0	0	0	0	0

Universität

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

OVERVIEW PARAMETERS

parameter name	general model	model presented		
Household consumption parameters	<i>α</i> ₁ , <i>α</i> ₂	$\alpha_1 = 0.8, \alpha_2 = 0.2$		
Input-Output matrix	$\mathbf{a} = \left(a_{ij}\right)$	$\mathbf{a} = \begin{bmatrix} 0.48 & 0.60 \\ 0.02 & 0.15 \end{bmatrix}$		
Price matrix	$\mathbf{P} = \mathbf{diag}(P_i)$	$\mathbf{P} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		
Partial adjustment accelerators	β,γ	$eta=0.75, \gamma=0.5$		
Government spending	G	$G_p = 46.6, G_e = 0$		
Consumption	C ⁰	$C_p^0 = 0.961, C_e^0 = 0.039$		
Individual markups	ϕ	$\phi_p = 0.3333, \phi_e = 0.1364$		
Interest rates	<i>r_M</i> , <i>r_L</i>	$r_M = 0.04, r_L = 0.05$		
Tax rate	θ	$\theta = 0.48$		
Inventory to sales ratio	σ^{\top}	$\sigma^{\top} = 0.5$		
Labor demand per output unit	λ	$\omega_p \lambda_p = 0.25; \omega_e \lambda_e = 0.13$		
Wages per labor unit	ω			

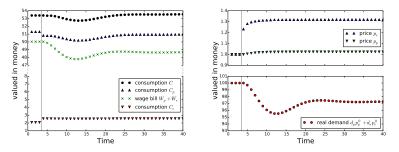

STUDY ENERGY PRICE SHOCKS

STUDY ENERGY PRICE SHOCKS

Motivation:

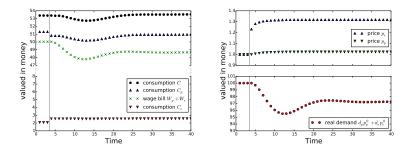
 historically, recessions were correlated with high energy prices

source: Murphy/Hall 2011


IMPACT OF AN INCREASE IN ENERGY MARKUP ϕ_e

- increase markup ϕ_e on Energy (0.1364 \rightarrow 0.4).
- low price elasticity \rightarrow increase C_e^0 ,

IMPACT OF AN INCREASE IN ENERGY MARKUP ϕ_e


- increase markup ϕ_e on Energy (0.1364 \rightarrow 0.4).
- low price elasticity \rightarrow increase C_e^0 ,

< □ > < 同 > < 三

- ► Left: change of consumption pattern.
- ► Right: increase in prices, drop in real demand.

EXPLANATION FOR ENERGY PRICE SHOCKS

- increased prices reduce real demand
- ▶ wage income drops \rightarrow nominal demand decreases

nac

Keynesian multiplier effect

LITERATURE

- ► Daly H E 1990 Ecol. Econ. l pp l–6
- ► Farley J, Burke M, Flomenhoft G, Kelly B, Murray D, Posner S, Putnam M, Scanlan A and Witham A 2013 *Sustainability* **5** pp 2802–26
- Godley W and Lavoie M 2007 Monetary Economics: An Integrated Approach to Credit, Money, Income, Production and Wealth (Basingstoke etc.: Palgrave Macmillan)
- ► Gowdy J M 1991 Ecol. Econ. 3 pp 77–87
- ► Kronenberg T 2010 Ecol. Econ. 69 pp 1488–94
- Kümmel R 2011 The second law of economics: Energy, Entropy, and the Origins of Wealth (Springer)
- ▶ Löhr D 2012 Ecol. Econ. 84 pp 232–9
- Miller R E and Blair P D 2009 Input Output Analysis: Foundations and Extensions 2nd ed (Cambridge University Press)
- ▶ Murphy D J and Hall C A S 2011 Ann. N.Y. Acad. Sci. 1219 52–72

ヘロト 人間ト 人注ト 人注ト 二注一

DATA SOURCES

- Destatis 2010 Volkswirtschaftliche Gesamtrechnungen: Input-Output-Rechnung Fachserie 18 Reihe 2 (Wiesbaden: Statistisches Bundesamt)
- Destatis 2010 Statistisches Jahrbuch 2010 (Wiesbaden: Statistisches Bundesamt)
- IPCC 2013 Summary for Policymakers Climate Change 2013: The Physical Science Basis (Cambridge: Cambridge University Press)
- ▶ BP 2009 Statistical Review of World Energy, June 2009
- EIA 2012 Estimated Primary Energy Consumption in the United States, Selected Years, 1635–1945 http://www.eia.gov/ totalenergy/data/annual/showtext.cfm?t=ptb1601
- EIA 2012 Primary Energy Overview, 1949-2011 http://www.eia.gov/totalenergy/data/annual/ showtext.cfm?t=ptb0101